Ch.17 Nilpotent Matrices and Jordan Canonical Form

Return to TOC

Strings

Consider the shift map defined by
(xy)(0x)\begin{pmatrix}x\\y\end{pmatrix}\mapsto\begin{pmatrix}0\\x\end{pmatrix}
On the basis, this map's action gives a string
e1e20\vec{e}_1\mapsto\vec{e}_2\mapsto\vec{0}

Example 17.1

A linear function n^:C4C4\hat{n}:\mathbb{C}^4\to\mathbb{C}^4 whose action on E4\mathcal{E}_4 is given by the string
e1e2e3e40\vec{e}_1\mapsto\vec{e}_2\mapsto\vec{e}_3\mapsto\vec{e}_4\mapsto\vec{0}
has R(n^)N(n^)=[{e4}]\mathscr{R}(\hat{n})\cap\mathscr{N}(\hat{n})=[\{\vec{e}_4\}], R(n^2)N(n^2)=[{e3,e4}]\mathscr{R}(\hat{n}^2)\cap\mathscr{N}(\hat{n}^2)=[\{\vec{e}_3,\vec{e}_4\}], and R(n^3)N(n^3)=[{e2,e3,e4}]\mathscr{R}(\hat{n}^3)\cap\mathscr{N}(\hat{n}^3)=[\{\vec{e}_2,\vec{e}_3,\vec{e}_4\}]
The matrix representation is
N^=RepE4,E4(n^)=(0000100001000010)\hat{N}=\text{Rep}_{\mathcal{E}_4,\mathcal{E}_4}(\hat{n})=\begin{pmatrix}0&0&0&0\\1&0&0&0\\0&1&0&0\\0&0&1&0\end{pmatrix}
None of n^,n^2,n^3\hat{n},\hat{n}^2,\hat{n}^3 are the zero map, but n^4\hat{n}^4 is

Example 17.2

Transformations can also act on two strings. The transformation tt acting on the basis B=β1,...,β5B=\langle\vec{\beta}_1,...,\vec{\beta}_5\rangle by
β1β2β30β4β50\begin{array}{l}\vec{\beta}_1\mapsto\vec{\beta}_2\mapsto\vec{\beta}_3\mapsto\vec{0}\\\vec{\beta}_4\mapsto\vec{\beta}_5\mapsto\vec{0}\end{array}
has, for example, β3\vec{\beta}_3 in the intersection of the range space and null space.
The matrix representation is
RepB,B(t)=(0000010000010000000000010)\text{Rep}_{B,B}(t)=\left(\begin{array}{ccc|cc}0&0&0&0&0\\1&0&0&0&0\\0&1&0&0&0\\\hline0&0&0&0&0\\0&0&0&1&0\end{array}\right)

A nilpotent transformation is one with a power that is the zero map, and a nilpotent matrix is similar. In either case, the least such power is the index of nilpotency
Example 16.1 has an index of nilpotency of 4
Example 16.2 has an index of nilpotency of 3
The derivative map d/dx:P2P2d/dx:\mathcal{P}_2\to\mathcal{P}_2 has index of nilpotency of 3 since taking the derivative of any quadratic three times makes it 00

The subdiagonal in a matrix is the array formed by the entries just below the diagonal (shown in red)
(000100010)\begin{pmatrix}0&0&0\\\textcolor{#EE4266}{1}&0&0\\0&\textcolor{#EE4266}{1}&0\end{pmatrix}

Since the zero matrix is only similar to itself, any matrix similar to a nilpotent matrix is also nilpotent.

Example 17.3

With the matrix N^=(0000100001000010)\hat{N}=\begin{pmatrix}0&0&0&0\\1&0&0&0\\0&1&0&0\\0&0&1&0\end{pmatrix} and the four-vector basis
D=(1010),(0210),(1110),(0001)D=\langle\begin{pmatrix}1\\0\\1\\0\end{pmatrix},\begin{pmatrix}0\\2\\1\\0\end{pmatrix},\begin{pmatrix}1\\1\\1\\0\end{pmatrix},\begin{pmatrix}0\\0\\0\\1\end{pmatrix}\rangle
a change of basis operation produces this representation with respect to D,DD,D
(1010021011100001)(0000100001000010)(1010021011100001)1=(1010325021302120)\begin{pmatrix}1&0&1&0\\0&2&1&0\\1&1&1&0\\0&0&0&1\end{pmatrix}\begin{pmatrix}0&0&0&0\\1&0&0&0\\0&1&0&0\\0&0&1&0\end{pmatrix}\begin{pmatrix}1&0&1&0\\0&2&1&0\\1&1&1&0\\0&0&0&1\end{pmatrix}^{-1}=\begin{pmatrix}-1&0&1&0\\-3&-2&5&0\\-2&-1&3&0\\2&1&-2&0\end{pmatrix}
This new matrix is nilpotent with index of nilpotency 4

Let tt be a nilpotent transformation on VV. A tt-string generated by vV\vec{v}\in V is a sequence v,t(v),...,tk1(v)\langle\vec{v},t(\vec{v}),...,t^{k-1}(\vec{v})\rangle such that tk(v)=0t^k(\vec{v})=\vec{0}. A tt-string basis is a basis that is a concatenation of tt-strings (which can only happen if they are disjoint)

Example 17.4

This he linear map t:C3C3t:\mathbb{C}^3\to\mathbb{C}^3
(xyz)t(yz0)\begin{pmatrix}x\\y\\z\end{pmatrix}\xmapsto{t}\begin{pmatrix}y\\z\\0\end{pmatrix}
is nilpotent with index 3. A tt-string is
(001),(010),(100)\langle\begin{pmatrix}0\\0\\1\end{pmatrix},\begin{pmatrix}0\\1\\0\end{pmatrix},\begin{pmatrix}1\\0\\0\end{pmatrix}\rangle
and is also a tt-string basis for the space C3\mathbb{C}^3

For Example 16.2, the two strings can be concatenated to form a basis β1,β2,β3,β4,β5\langle\vec{\beta}_1,\vec{\beta}_2,\vec{\beta}_3,\vec{\beta}_4,\vec{\beta}_5\rangle for the domain C5\mathbb{C}^5 of tt

If a space has a tt-string basis then the index of nilpotency of tt equals the length of the longest string in that basis.

Any nilpotent transformation tt is associated with a tt-string basis. While it is not unique, the number and length of the strings is determined by tt
As a result, every matrix is similar to one that is all zeroes except for blocks of subdiagonal ones; it is represented by such matrix for some basis
If there are two such matrices, then they're just in a different order -> call the one with blocks in longest to shortest the canonical form

Example 17.5

The matrix
M=(1111)M=\begin{pmatrix}1&-1\\1&-1\end{pmatrix}
has index of nilpotency of 2. This is a dimension two matrix, the space the transformation is applied to is dimension 2. The null space of one application of this transformation has dimension 1, and the null space of two applications has dimension 2. Thus, the action of this transformation on a string basis is β1β20\vec{\beta}_1\to\vec{\beta}_2\to\vec{0}, making the canonical form
N=(0010)N=\begin{pmatrix}0&0\\1&0\end{pmatrix}
So, choosing β2N(m)\vec{\beta}_2\in\mathscr{N}(m) and β1\vec{\beta}_1 such that m(β1)=β2m(\vec{\beta}_1)=\vec{\beta}_2, for example
β2=(11)  β1=(10)\vec{\beta}_2=\begin{pmatrix}1\\1\end{pmatrix}\space\space\vec{\beta}_1=\begin{pmatrix}1\\0\end{pmatrix}
shows that the canonical form is RepB,B(m)=PMP1\text{Rep}_{B,B}(m)=PMP^{-1}, where
P1=RepB,B(id)=(1101)  P=(P1)1=(1101)P^{-1}=\text{Rep}_{B,B}(\text{id})=\begin{pmatrix}1&1\\0&1\end{pmatrix}\space\space P=(P^{-1})^{-1}=\begin{pmatrix}1&-1\\0&1\end{pmatrix}
We can check that indeed
(1101)(1111)(1101)=(0010)\begin{pmatrix}1&-1\\0&1\end{pmatrix}\begin{pmatrix}1&-1\\1&-1\end{pmatrix}\begin{pmatrix}1&1\\0&1\end{pmatrix}=\begin{pmatrix}0&0\\1&0\end{pmatrix}

Example 17.6

Consider the matrix
N=(0000010000111110100010111)N=\begin{pmatrix}0&0&0&0&0\\1&0&0&0&0\\-1&1&1&-1&1\\0&1&0&0&0\\1&0&-1&1&-1\end{pmatrix}
From this chart

powerNpN^pN(Np)\mathscr{N}(N^p)
1(0000010000111110100010111)\begin{pmatrix}0&0&0&0&0\\1&0&0&0&0\\-1&1&1&-1&1\\0&1&0&0&0\\1&0&-1&1&-1\end{pmatrix}{(00uvuv) | u,vC}\left\{\begin{pmatrix}0\\0\\u-v\\u\\v\end{pmatrix}\space\middle|\space u,v\in\mathbb{C}\right\}
2(0000000000100001000000000)\begin{pmatrix}0&0&0&0&0\\0&0&0&0&0\\1&0&0&0&0\\1&0&0&0&0\\0&0&0&0&0\end{pmatrix}{(0yzuv) | y,z,u,vC}\left\{\begin{pmatrix}0\\y\\z\\u\\v\end{pmatrix}\space\middle|\space y,z,u,v\in\mathbb{C}\right\}
3zero matrixC5\mathbb{C}^5

we see that after one application the null space has dimension 2, so 2 basis vectors map directly to zero. The nullity after 2 applications is 4, so two more basis vectors map to zero after 2 iterations. The nullity after 3 applications is 5, so the last remaining vector maps to zero after 3 iterations.
β1β2β30β4β50\begin{array}{l}\vec{\beta}_1\mapsto\vec{\beta}_2\mapsto\vec{\beta}_3\mapsto\vec{0}\\\vec{\beta}_4\mapsto\vec{\beta}_5\mapsto\vec{0}\end{array}
To produce such a basis, first pick two vectors from N(n)\mathscr{N}(n) that form a linearly independent set
β3=(00110)  β5=(00011)\vec{\beta}_3=\begin{pmatrix}0\\0\\1\\1\\0\end{pmatrix}\space\space\vec{\beta}_5=\begin{pmatrix}0\\0\\0\\1\\1\end{pmatrix}
Then, we find two vectors β2,β4N(n2)\vec{\beta}_2,\vec{\beta}_4\in\mathscr{N}(n^2) such that n(β2)=β3n(\vec{\beta}_2)=\vec{\beta}_3 and n(β4)=β5n(\vec{\beta}_4)=\vec{\beta}_5
β2=(01000)  β4=(01010)\vec{\beta}_2=\begin{pmatrix}0\\1\\0\\0\\0\end{pmatrix}\space\space\vec{\beta}_4=\begin{pmatrix}0\\1\\0\\1\\0\end{pmatrix}
Finally, find vector β1N(n3)\vec{\beta}_1\in\mathscr{N}(n^3) such that n(β1)=β2n(\vec{\beta}_1)=\vec{\beta}_2


Jordan Canonical Form

We have given canonical forms for nilpotent and diagonalizable matrices. We now look for canonical forms for more general matrices.
We will show that any linear transformation tt can be represented by a map RepB,B(t)\text{Rep}_{B,B}(t) under basis BB such that it is the sum of a diagonal matrix and a nilpotent matrix.

First: a linear transformation on a nontrivial vector space is nilpotent iff its only eigenvalue is zero.

Proof

If the transformation tt on a nontrivial vector space is nilpotent, then some tnt^n is 00. Thus, tt is a root of the polynomial p(x)=xnp(x)=x^n. Since p(t)=0p(t)=0, we must have p(λ)=0p(\lambda)=0 for every eigenvalue λ\lambda of tt. Since p(λ)=λnp(\lambda)=\lambda^n, the only eigenvalue of tt is zero.
Conversely, if the only eigenvalue of an nn-dimensional vector space tt is 00, then its characteristic polynomial is (1)nxn(-1)^nx^n. By the Cayley-Hamilton Theorem, tt satisfies its characteristic polynomial so tn=0t^n=0, thus tt is nilpotent.

The "nontrivial vector space" is important because a trivial vector space would have no eigenvalues since it has no associated nonzero eigenvectors.

The transformation tλ idVt-\lambda\text{ id}_V is nilpotent iff tt's only eignevalue is λ\lambda.

Proof

The transformation is nilpotent iff tλidVt-\lambda\text{id}_V's only eigenvalue is 00. But that holds iff t(v)=λvt(\vec{v})=\lambda\vec{v}, which is true iff (tλ idV)(v)=0v(t-\lambda\text{ id}_V)(\vec{v})=0\cdot\vec{v}

If the matrices TλIT-\lambda I and NN are similar, then TT and N+λIN+\lambda I are also similar via the same change of basis matrices.

Proof

We have N=P(TλI)P1=PTP1P(λI)P1=PTP1λPIP1=PTP1λN=P(T-\lambda I)P^{-1}=PTP^{-1}-P(\lambda I)P^{-1}=PTP^{-1}-\lambda PIP^{-1}=PTP^{-1}-\lambda. Rearranging gives N+λI=PTP1N+\lambda I=PTP^{-1}

Since nilpotent matrices, which have a single eigenvalue of 00 are similar to the canonical form matrix consisting of all zeroes except blocks of subdiagonal ones, this can be extended to any matrix with a single eigenvalue of λ\lambda, in which case all the entries are λ\lambda.

Example 17.7

Find the canonical form of the matrix
T=(2114)T=\begin{pmatrix}2&-1\\1&4\end{pmatrix}


The characteristic polynomial of TT is (x3)2(x-3)^2, so 33 is the only eigenvalue. Thus, T3IT-3I has a unique eigenvalue of 00, making it nilpotent. To find the canonial form, we find the string basis for T3IT-3I

power pp(T3I)p(T-3I)^pN((T3I)p)\mathscr{N}((T-3I)^p)
11(1111)\begin{pmatrix}-1&-1\\1&1\end{pmatrix}{(yy) yC}\{\begin{pmatrix}-y\\y\end{pmatrix}|\space y\in\mathbb{C}\}
22(0000)\begin{pmatrix}0&0\\0&0\end{pmatrix}{(xy) x,yC}\{\begin{pmatrix}x\\y\end{pmatrix}|\space x,y\in\mathbb{C}\}

So the nullspace of t3idt-3\text{id} has dimension 1 and (t3id)2(t-3\text{id})^2 has dimension 2, making the string basis BBβ1β20\vec{\beta}_1\mapsto\vec{\beta}_2\mapsto\vec{0}, giving the canonical form
RepB,B(t3id)=N=(0010)\text{Rep}_{B,B}(t-3\text{id})=N=\begin{pmatrix}0&0\\1&0\end{pmatrix}
To find such a basis BB, we look for a β2\vec{\beta}_2 that is in the nullspace of t3idt-3\text{id} and a β1\vec{\beta}_1 that is in the nullspace of (t3id)2(t-3\text{id})^2. Note that they must form a linearly independent set.
One such basis is
β1=(11)  β2=(11)\vec{\beta}_1=\begin{pmatrix}1\\1\end{pmatrix}\space\space\vec{\beta}_2=\begin{pmatrix}1\\-1\end{pmatrix}
So we can conclude TT is similar to
N+3I=(3013)N+3I=\begin{pmatrix}3&0\\1&3\end{pmatrix}

A Jordan block is a square matrix, or square block of entries within a matrix, that is all zero except every diagonal entry is some λC\lambda\in\mathbb{C} and every subdiagonal entry is 11.
The strings in the associated basis are Jordan strings or Jordan chains.

The previous examples show that for single-eigenvalue matrices, the Jordan block matrices are the canonical representations of the similarity class. We can make this matrix form unique by arranging the basis elements so that the block of subdiagonal ones go from longest to shortest from left to righ.

Example 17.8

There are three similarity classes for 3×33\times 3 matrices with unique eigenvalue 22:
(200020002)(200120002)(200120012)\begin{array}{ccc}\begin{pmatrix}2&0&0\\0&2&0\\0&0&2\end{pmatrix}&\begin{pmatrix}2&0&0\\1&2&0\\0&0&2\end{pmatrix}&\begin{pmatrix}2&0&0\\1&2&0\\0&1&2\end{pmatrix}\end{array}
Of these, the matrix
(200020012)\begin{pmatrix}2&0&0\\0&2&0\\0&1&2\end{pmatrix}
belongs to the middle similarity class due to the convention mentioned above.

Any transformation t:CnCnt:\mathbb{C}^n\to\mathbb{C}^n can be represented in Jordan form, where each JλJ_\lambda is a Jordan block
(Jλ1zeroesJλ2zeroesJλn)\begin{pmatrix}J_{\lambda_1}&&-\text{zeroes}-&\\&J_{\lambda_2}&&\\\\&&\ddots&\\\\&&-\text{zeroes}-&J_{\lambda_n}\end{pmatrix}

Example 17.9

This matrix with eigenvalues 33, 22, and 11,
(300000130000003000000200000120000001)\begin{pmatrix}3&0&0&0&0&0\\1&3&0&0&0&0\\0&0&3&0&0&0\\0&0&0&2&0&0\\0&0&0&1&2&0\\0&0&0&0&0&-1\end{pmatrix}
has four Jordan blocks: two associated with the eigenvalue 33, and one each with eigenvalues 22 and 1-1. The associated string representations are
β1t3idβ2t3id0β3t3id0β4t2idβ5t2id0β6t+1id0\begin{array}{r}\vec{\beta}_1\xmapsto{t-3\text{id}}\vec{\beta}_2\xmapsto{t-3\text{id}}\vec{0}\\ \vec{\beta}_3\xmapsto{t-3\text{id}}\vec{0}\\\vec{\beta}_4\xmapsto{t-2\text{id}}\vec{\beta}_5\xmapsto{t-2\text{id}}\vec{0}\\ \vec{\beta}_6\xmapsto{t+1\text{id}}\vec{0}\end{array}